IV B.Tech - I Semester – Regular Examinations - DECEMBER 2022

DEEP LEARNING

(COMPUTER SCIENCE & ENGINEERING)

Duration: 3 hours

Max. Marks: 70

Note: 1. This question paper contains two Parts A and B.

- 2. Part-A contains 5 short answer questions. Each Question carries 2 Marks.
- 3. Part-B contains 5 essay questions with an internal choice from each unit. Each question carries 12 marks.
- 4. All parts of Question paper must be answered in one place.

$\mathbf{PART} - \mathbf{A}$

		BL	CO
1. a)	Differentiate Machine Learning and Deep	L2	CO1
	Learning.		
1. b)	Define GAN.	L1	CO1
1. c)	How does a CNN differ from a fully connected		CO1
	neural network?		
1. d)	Compare RNN with ANN.	L2	CO1
1. e)	Write any 4 real-time applications of deep	L1	CO1
	learning.		

PART - B

			BL	СО	Max. Marks		
	UNIT-I						
2	a)	How many Activation functions are there? What are they? Explain them briefly with their formulas.	L2	CO1	6 M		

BL – Blooms Level CO – Course Outcome

	b)	Demonstrate Biological Neuron and	L3	CO2	6 M
		construct the mathematical model of			
		McCulloch-Pitts Neuron.			
		OR		1 1	
3	a)	What are the sub areas of AI? Explain	L2	CO1	6 M
		each of them in-detail.			
	b)	Show the Common Architectural	L3	CO2	6 M
		Principles of Deep Networks.			
	I	UNIT-II		, , , , , , , , , , , , , , , , , , , ,	
4	a)	Construct Restricted Boltzmann Machine	L3	CO2	6 M
		with an example.			
	b)	How do GANs work? Explain the steps	L2	CO1	6 M
		for training GAN.			
OR					
5	a)	What is Auto-Encoder? Construct	L3	CO2	6 M
		regularized Auto-Encoders.			
	b)	How the pre-trained models for text	L2	CO1	6 M
		classification and object detection differ			
		from each other?			
		UNIT-III		, , , , , , , , , , , , , , , , , , , ,	
6	a)	What is a Convolutional Neural Network	L2	CO1	6 M
		(CNN) and how does it work?			
	b)	Examine the concept "What happens	L4	CO4	6 M
		when the value of stride is high and low?"			
OR					
7	a)	Explain Stride, Padding, Max-pooling	L2	CO1	6 M
		and Flattening using an example.			

	b)	Examine the Convolution operation.	L4	CO4	6 M	
	0)	Examine the convolution operation.	LŦ	04		
UNIT-IV						
8	a)	Why LSTM is required? Define it in	L2	CO1	6 M	
		detail with its architecture.				
	b)	Construct Recurrent Neural Network	L3	CO3	6 M	
		theorem.				
		OR				
9	a)	Write a short notes on	L2	CO1	6 M	
	<i>a)</i>	i) Deep Recurrent Networks		001	0 1/1	
		ii) Recursive Neural Networks				
	b)	Construct any two applications of	L3	CO3	6 M	
	- /	Recursive Neural Networks.				
				11		
		UNIT-V				
10	a)	Why NLP is needed? What are the	L2	CO1	6 M	
		components of NLP? Explain them.				
	b)	Explain Dropout. How dropout can	L2	CO1	6 M	
	,	reduce the over-fitting?				
OR						
11	a)		L3	CO3	6 M	
I I	u)	Twitter Data Analysis.	L 3		0 171	
	1 \		1.0			
	b)	Explain object detection in CNN with	L2	CO1	6 M	
		example.				